Increased Oxidative Damage of RNA in Early-Stage Nephropathy in db/db Mice
نویسندگان
چکیده
To evaluate RNA oxidation in the early stage of diabetic nephropathy, we applied an accurate method based on isotope dilution high-performance liquid chromatography-triple quadruple mass spectrometry to analyze the oxidatively generated guanine nucleosides in renal tissue and urine from db/db mice of different ages. We further investigated the relationship between these oxidative stress markers, microalbumin excretion, and histological changes. We found that the levels of 8-oxo-7,8-dihydroguanosine (8-oxoGuo) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) were increased in the urine and renal tissue of db/db mice and db/db mice with early symptoms of diabetic nephropathy suffered from more extensive oxidative damage than lean littermate control db/m mice. Importantly, in contrast to the findings in db/m mice, the 8-oxoGuo levels in the urine and renal tissue of db/db mice were higher than those of 8-oxodGuo at four weeks. These results indicate that RNA oxidation is more apparent than DNA oxidation in the early stage of diabetic nephropathy. RNA oxidation may provide new insight into the pathogenesis of diabetic nephropathy, and urinary 8-oxoGuo may represent a novel, noninvasive, and easily detected biomarker of diabetic kidney diseases if further study could clarify its source and confirm these results in a large population study.
منابع مشابه
Moderate exercise attenuates caspase-3 activity, oxidative stress, and inhibits progression of diabetic renal disease in db/db mice.
Diabetic nephropathy, the leading cause of end-stage renal disease, is characterized by a proapoptotic and prooxidative environment. The mechanisms by which lifestyle interventions, such as exercise, benefit diabetic nephropathy are unknown. We hypothesized that exercise inhibits early diabetic nephropathy via attenuation of the mitochondrial apoptotic pathway and oxidative damage. Type 2 diabe...
متن کاملAltered gene expression related to glomerulogenesis and podocyte structure in early diabetic nephropathy of db/db mice and its restoration by pioglitazone.
Glomerular injury plays a pivotal role in the development of diabetic nephropathy. To elucidate molecular mechanisms underlying diabetic glomerulopathy, we compared glomerular gene expression profiles of db/db mice with those of db/m control mice at a normoalbuminuric stage characterized by hyperglycemia and at an early stage of diabetic nephropathy with elevated albuminuria, using cDNA microar...
متن کاملGeldanamycin Derivative Ameliorates High Fat Diet-Induced Renal Failure in Diabetes
Diabetic nephropathy is a serious complication of longstanding diabetes and its pathogenesis remains unclear. Oxidative stress may play a critical role in the pathogenesis and progression of diabetic nephropathy. Our previous studies have demonstrated that polyunsaturated fatty acids (PUFA) induce peroxynitrite generation in primary human kidney mesangial cells and heat shock protein 90β1 (hsp9...
متن کاملDietary iron restriction inhibits progression of diabetic nephropathy in db/db mice.
Excess iron causes oxidative stress through hydroxyl-radical production via Fenton/Haber-Weiss reactions. Recently, body iron reduction has been found to ameliorate diabetes. In the present study, we examined the protective effect of dietary iron restriction against diabetic nephropathy in the db/db mouse model of diabetic nephropathy using db/m mice as controls. The db/db mice were divided int...
متن کاملPrevention of diabetic nephropathy by treatment with astaxanthin in diabetic db/db mice.
Oxidative stress is implicated as an important mechanism by which diabetes causes nephropathy. Astaxanthin, which is found as a common pigment in algae, fish, and birds, is a carotenoid with significant potential for antioxidative activity. In this study, we examined whether chronic administration of astaxanthin could prevent the progression of diabetic nephropathy induced by oxidative stress i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017